An s.g.
Herrn Dr.Herwig VAN STAA L_{a} ndeshauptmann von Tirol Landhaus
\qquad

Sehr geehrter Herr Landeshauptmann !

Eingedenk meines seinerzeitigen Versprechens Ihrem hochverehrten Schwiegervater gegenüber Ihnen bei einschlägigen Fragen meitier Fächer dienlich $z u$ sein, hat mich Ihre vor kurzem gemachte Feststellung "das ötztal ist das hochwassergefährdetste Tal von Tirol" gemahnt, diesen Brief zu schreiben, war ich doch 35 Jahre hindurch mit einschlägigen Forschungsarbeiten im ötztal befaßt gewesen.

1) Zur Frage der Hochwassergefährdung des ötztales

Nach allen verfigbaren Unterlagen ist die naturräumliche Gefährdung des Ötztales durch Hochwässer sehr gering, weil
a) es dort selten zum Auftreten von Starkregen kommt (Abb.1) und
b) ebenfalls selten Großschneefalle auftreten. (Abb.2), weshalb das Ötztal unbestritten
c) iberhaupt das kontinentalste Gebiet im ganzen Alpenbogen ist (Abb.3), wo wegen der starken Niederschlagsabschirmung durch die Randalpen im Norden und Sïden die Niederschläge kaum mit der Seehöhe zunehmen (Abb.4). Dementsprechend ist auch die
d) Zahl der Gewitter/Jahr die allergeringste in Österreich (2 Gewitter/Jahr im Gegensatz zu 40 Gewittern/Jahr in anderen Landschaften) (Tab.1).

Im Zusammenhang mit dem Ablauf von Hochwässern ist auch die schwalldämpfende Wirkung der typischen Stufenlandschaft des ötztales hervorzuheben und ebenso der gänzliche Wegfall früherer Schadensursachen wie z.B. das Ausbrechen von Eisseen, was früher weithin Verheerungen zur Folge hatte.Als Naturraum betrachtet hat das ötztal also eine ganz geringe Hochwassergefährdung.

Dank dieser offenkundigen naturräumlichen Begünstigung sind die Hochwasserschäden der letzten 50 Jahre ausschließlich menschlichem Fehlverhalten zuzuschreiben, weil die Jahrhunderte hindurch gilltige Linie gesunden Hausverstandes einfach beiseite geschoben worden ist.Als Musterbeispiele seien die Ereignisse in Längenfeld im Juni 1965 und in Sölden im August 1987 angeführt, wo man einerseits in den die Ortschaft schützenden Klammwald eine Siedlung hineingesetzt hatte (Längenfeld, Abb。5 und 6), also den"billigemi" Baugrund angeboten hatte und andererseits bedenkenlos die ïber Jahrhunderte selbstverständlich freigehaltene Bachstatt und regelmäßig wiederbenützte Ablagerungsfläche einfach zum Baugrund ernannt hatte. Die einschlägigen Bilder von Längenfeld Abb. 5 und 6 sowie von Sölden bedürfen keiner umfangreichen Kommentare.Während sich das alte Längenfeld vernünftigerweise auf die beiden Ränder des Fischbach-Schwemmkegels beschränkt hatte (Abb.5), bot diese Art naturwidrigen Fortschritts dem Fischbach völlig neue Schadensmöglichkeiten.In Sölden hatte man seit 1954 über 3 Jahrzehnte Hotel um Hotel ungesichert in das offenkundige Ablagerungsgebiet gesetzt, wo sich bei diesem eindeutigen Sohlentalquerschnitt beim Schadensereignis im August 1987 nun Schlamm und Geschiebe in den Kellern dieser Objekte ausbreiten konnten. Eigentlich gänz logisch bei Beachtung der obwaltenden Gegebenheiten bei solcher Raum(um)-und (un)ordnung, wie dies ebenfalls sprechend die $A b b \cdot 7,8,9$ und 10 aufzeigen . Dementsprechend hatten natiolich fast nur diese Neubauten unter den Schäden gelitten. Beispiele soIoh naturfeindlicher Raumordnung und Flächenwidmung, wie in den beiden beschriebenen Beispielen, findet man heute aber weithin im ganzen Land, so daß man bei Anlegen dieses Maßstabes weithin mit vergrößerter Hochwassergefährdung zu rechnen hat und nicht nur im Ötztal, wo die Tiwag gerade ein Projekt umzusetzen vorhat.Zur Sanierung dieser heutigen Situation wird man aber um eine ganze Palette notwendiger und z.T. schmerzlicher Maßnahmen nicht herumkommen, um dereinst ein lebenswertes Land den Nachkommen hinterlassen zu können.
2) Über den Abflußtyp von Gletscherbächen und die Schutzwirkung hochgelegener Speicheranlagen.

Gletscherbäche besitzen durch die Konzentration ihres Jahresabflusses auf etwa 4 Sommermonate ein jährlich mit absoluter Sicherheit zu erwartendes Geschiebetransportvermögen, das die Deponie von Schadgeschiebe in Grenzen hält (Abb。11). Bei Ableitung solcher Gletscherbäche geht naturlich dieser vorteilshafte Abtransport verloren, während nun aber weiterhin Geschiebe aus Zubringern (Nebenbächen), sowie von Hängen und $u . U$, auch aus den Uferbereichen anfällt, das nach jahrelanger Ansammlung erst im Exzessivfall, nun aber massenweise, zum Abtransport gelangt.Die Ableitung eines Gletscherbaches bedeutet also eine störung von ziemlich ausgeglichenen Geschiebetransportvorgängen und kann auch im Unterliegerbereich mitunter Gerinneeintiefungen zur Folge haben, weil ja das Geschiebe aus dem Oberlauf im Staubecken verbleibt.
Dieser besondere, auf wenige Sommermonate konzentrierte Abflußtyp ist auch fïr die Beurteilung der Schutzbeiwertes der Stauanl-ge selbst von Bedeutung, weil im Sommer -also auch in der normal n Hochwasserzeit, der Speicher in Fullung begriffen ist und daher doct nur ein mehr oder weniger großer Teil als Hochwasser-Fiullkapazität verfügbar ist,wenn nicht eine eigene zusätzlich geschaffene Hochwasserfiillkapazität von vornherein vorgesehen worden ist .Das Hochwasserereignis in Sölden zu Ende August 1987 ist also zu einem Zeitpunkt weitgehender Speicherfiillung eingetreten (Abb.11).Auf das zweite geschilderte Ereignis (Fischbach in Längenfeld) hätte eine Speicheranlage im oberen ötztal natülich auch keine Auswirkung gehabt. Selbst wenn man von Großkatastrophen ansieht, die durch Speicher oder ihre Regelung selbst hervorgerufen wurden (LongaroneRutschung in den vollen Speicher) Frejus oder im Martelltal (Regelungsfehler), muß man den Schutzbeiwert solcher Anlagen zeitlich und örtlich relativieren.

Zusammenfassend läßt sich also sagen, daß das ötztal von Natur aus eine besonders geringe Hochwasserbedrohung besitzt und daß der Aufstau von Gletscherbächen bei einem teilweisen Schutzbeiwert auch neue Schadenskriterien mit sich bringtMan muß diese Wirkungen ohne Einseitigkeit objektivieren und Schadenswirkungen auf deplazierte Siedlungen sind leider kein Spezifikum des ötztales
In der Hoffnung Ihnen und damit dem Land etwas dienlich gewesen zu sein, verbleibe ich mit freundlichem Gruß Ihr sehr ergebener

Abb. 1: Verteilung der größten Ein-Tages-Niederschläge des Zeitraumes 1901-1960 in Österreich (Hydrographischer Dienst in Ớsterreich 1960, 1964)

Abb. 2: Häufigkeit der Groß-Schneefälle in Ósterreich in den Wintern 1894/95-1938/39 (Schalko-Steinhauser 1950)

Abb. 3 : Karte der hygrischen Kontinentalität (GAMS 1931), wobei der Grad der Kontinentalität durch den $\operatorname{ctg} \mathrm{N}(\mathrm{mm}) / \mathrm{H}(\mathrm{m})$, also durch Grade ausgedrückt wird.Linien gleicher Kontinentalität sind Isepifen
Das innere ótztal hat die hächste Kontinentalität im ganzen Alpen raum

Abb. 4 : Unterschiedliche Kontinentalitätsgrade entlang verschiedener Täler und Gebiete in den Alpen wobei sich zeigt, die allergeringsten Niederschlagswerte auftreten. (SCHIECHTL 1975)

Tab. 1 . Häufigkeit hoher Ein-Tages-Niederschlagsintensitäten nördlich und südlich der Alpen über Werten von $100 \mathrm{~mm} / 24 \mathrm{~h}$ (Schweiz) bzw Osterreich von $200 \mathrm{~mm} / 24 \mathrm{~h}$ entlang eines Querschnittes durch die
Sta Alpen (AULITZKY 1968, COURVOISIER 1969)
Staat Gebiet

> Häufigkeit der Starkregen von
> $100 \mathrm{~mm} / 24 \mathrm{~h}$ (Schweiz) bzw. von
> $200 \mathrm{~mm} / 24 \mathrm{~h}$ (Ơsterreich) bezogen
> auf einen 100jährigen Zeitraum

Zahl der
Stationen mit
Starkregen
genannten Aus maß
Schweiz: Nordrand der Alpen
Inneralpen Südrand d.Alpen

3,2
1,8
109,2
18,0
2,0
25,0

Abb. : 6 Ober- und Unterlängenfeld mit der dicht an den Fischbach gesetzten neuen Siedlung im Klammwald und der Vermurung im Juni 1965, wobei es zuerst zu Auflandungen im flachen Unterlauf kam, die immer weiter schwemmkegelaufwärts zu Bachaustritten führten

Abb.7 : Das Alt-Sölden am Hang und Neu-Sölden am überflub_{a} ren Talboden der Otztaler Ache mit den alten und neuerbauten Häusern und der Gefahrenzonung der Wildbachverbauuung (AULITZKY 1988)

Abb. 8 : Überflutung von Sölden (Ötztal), Tirol, im Sommer 1987, die praktisch die ganze Breite des Sohlentales bedeckte, das aus gutem Grund bis in unsere Zeit unbesiedelt blieb. Während ein Gefahrenzonenplan der Wildbachverbauung vorlag, fehlte ein solcher der Wasserbauverwaltung. (Aulitzky 1988)

Abb.9: Alter des Hausbestandes in Sölden im Überflutungsgebiet des August-Hochwassers 1987 (MUHAR 1988)

Abb.10: Hauszerstörungen abhängig vom Alter der Errichtung in Sölden nach dem August-Hochwasser 1987 (MUHAR 1988)

Abb. 11 : Abflusstypen von Gewässern in Österreich (nach Kresser 1965)

1. Gewässer mit glazialem Abflusstyp (Venter Ache bei Vent, $E=165 \mathrm{~km}^{2}$ mit 40% Vergletscherung)
2. Gewässer mit nivalem Abflusstyp (Inn bei Innsbruck, $E=5794 \mathrm{~km}^{2}, 10 \%$ Gletscherwasseranteil)
3. Gebirgsfluss ohne Gletscheranteil (Mur bei Frohnleiten, $E=6553 \mathrm{~km}^{2}$)
4. Voralpines Gewässer (Erlauf bei Wieselburg, E $=578 \mathrm{~km}^{2}$)

Ausgewählte Literatur :

AULITZKY Herbert (1968) : Analyse von Schadensursachen von Unwetterkatastrophen zum Zwecke der Vorbeugung. ÖWW. 20, $\mathrm{H} .5 / 6$ und $7 / 8,90-97$ und $144-154$
AULITZKY Herbert (1988) : Sommerhochwässer 1987 in TirolNaturkatastrophen oder fehlende Vorbeugung ? OWW 40, 122-128
AULITZKY Herbert (1973) : Berücksichtigung der der Wildbachund Lawinengefahrengebiete als Grundlage der Raumordnung eines Gebirgslandes. 100 Jahre Bodenkultur-FachveranstaltungenTechnik in ger ForstoungiHolzwirtschaft (Band TV/Teilo seming und Raumordnung eines Gebirgslandes, S.81-118
COURVOISIER H.W.(1969) : Die ergiebigen Niederschläge und das Hochwasser vom September 1968 auf der Nordseite der Schweizer Alpen. Cours déau et dénergie 61,228-234
GAMS Helmut (1931) : Klimatische Begrenzung der Pflanzenareale und hygrische Kontinentalität in den Alpen。Zeitschr。der ges. Erdkunde, Berlin, mit Karte
HYDROGRAPHISCHER DIENST IN ÖSTERREICH (1960) : Extreme Tagesniederschläge in Österreich im Zeitraum 1901-1950.Hydr.Zentralbüro Wien
HYDROGRAPHISCHER DIENST IN ÖSTERREICH (1964) : Die.Niederschäge, Schneeverhältnisse, Luft-und Wassertemperaturen in Österreich im Zeitraum 1951-1960.Hydr.Zentralbüro Wien
KRESSER W.(1965) :Österr.Wasserbilanz•Vortrag zum Tąg dea Wassers am 5.5.1965, Zeitschr.f.Wasserwirtsch. 17, H. 9/10
MUHAR A.(1988) : Hochwasserschäden 1987 und Siedlungsentwicklung im tiroler Ötztal.Öst.Wasserwirtsch. 40, H. 7/8, 188-194
SCHIECHTL H.M. (1975) : Die Vegetation Tirols.Hochwasser-und L_{a} winenschutz in Tieol 1975,S.64-82
SCHALKO M•/F.STEINHAUSER (195o) : Groß-Schneefälle in österreich. Anh. 8 z.Jb.d.Zentralanst.f.Met.u.Geodyn. Wien

